| 0 Reviews | 2 Enrolled | 8 Views


Course ( $ )

Self Learning Course

Learn any where any time
Course Description

Pattern recognition is a branch of machine learning that focuses on the recognition of patterns and regularities in data, although it is in some cases considered to be nearly synonymous with machine learning.

What will you get?

High Quality Video Content

Fun-learning and engaging experience

Anytime anywhere learning

Relevant content

Sample Course Video

Some of our courses are exclusively meant for registered users. Sign up to browse our entire range of courses, paid and free.

Course Syllabus
  • Mod-01 Lec-01 Introduction
  • Mod-01 Lec-02 Feature Extraction - I
  • Mod-01 Lec-03 Feature Extraction - II
  • Mod-01 Lec-04 Feature Extraction - III
  • Mod-01 Lec-05 Bayes Decision Theory
  • Mod-01 Lec-06 Bayes Decision Theory (Contd.)
  • Mod-01 Lec-07 Normal Density and Discriminant Function
  • Mod-01 Lec-08 Normal Density and Discriminant Function (Contd.)
  • Mod-01 Lec-09 Bayes Decision Theory - Binary Features
  • Mod-01 Lec-10 Maximum Likelihood Estimation
  • Mod-01 Lec-11 Probability Density Estimation
  • Mod-01 Lec-12 Probability Density Estimation (Contd.)
  • Mod-01 Lec-13 Probability Density Estimation (Contd. )
  • Mod-01 Lec-14 Probability Density Estimation ( Contd.)
  • Mod-01 Lec-15 Probability Density Estimation ( Contd. )
  • Mod-01 Lec-16 Dimensionality Problem
  • Mod-01 Lec-17 Multiple Discriminant Analysis
  • Mod-01 Lec-18 Multiple Discriminant Analysis (Tutorial)
  • Mod-01 Lec-19 Multiple Discriminant Analysis (Tutorial )
  • Mod-01 Lec-20 Perceptron Criterion
  • Mod-01 Lec-21 Perceptron Criterion (Contd.)
  • Mod-01 Lec-22 MSE Criterion
  • Mod-01 Lec-23 Linear Discriminator (Tutorial)
  • Mod-01 Lec-24 Neural Networks for Pattern Recognition
  • Mod-01 Lec-25 Neural Networks for Pattern Recognition (Contd.)
  • Mod-01 Lec-26 Neural Networks for Pattern Recognition (Contd. )
  • Mod-01 Lec-27 RBF Neural Network
  • Mod-01 Lec-28 RBF Neural Network (Contd.)
  • Mod-01 Lec-29 Support Vector Machine
  • Mod-01 Lec-30 Hyperbox Classifier
  • Mod-01 Lec-31 Hyperbox Classifier (Contd.)
  • Mod-01 Lec-32 Fuzzy Min Max Neural Network for Pattern Recognition
  • Mod-01 Lec-33 Reflex Fuzzy Min Max Neural Network
  • Mod-01 Lec-34 Unsupervised Learning - Clustering
  • Mod-01 Lec-35 Clustering (Contd.)
  • Mod-01 Lec-36 Clustering using minimal spanning tree
  • Mod-01 Lec-37 Temporal Pattern recognition
  • Mod-01 Lec-38 Hidden Markov Model
  • Mod-01 Lec-39 Hidden Markov Model (Contd.)
  • Mod-01 Lec-40 Hidden Markov Model (Contd. )

No Reviews